翻訳と辞書 ・ Whitney Township, Michigan ・ Whitney Toyloy ・ Whitney umbrella ・ Whitney v. California ・ Whitney Warren ・ Whitney Way Thore ・ Whitney Westerfield ・ Whitney Williams ・ Whitney Wolanin ・ Whitney Wolverine ・ Whitney Young ・ Whitney Young Birthplace and Museum ・ Whitney Young High School ・ Whitney Young Memorial Bridge ・ Whitney Young, Yonkers ・ Whitney's planarity criterion ・ Whitney's Regiment of Militia ・ Whitney, Alabama ・ Whitney, California ・ Whitney, Idaho ・ Whitney, Maine ・ Whitney, Michigan ・ Whitney, Nebraska ・ Whitney, Nevada ・ Whitney, Oregon ・ Whitney, Texas ・ Whitney, West Virginia ・ Whitney-Farrington-Cook House ・ Whitney-on-Wye ・ Whitney-on-Wye toll bridge
|
|
Whitney's planarity criterion : ウィキペディア英語版 | Whitney's planarity criterion
In mathematics, Whitney's planarity criterion is a matroid-theoretic characterization of planar graphs, named after Hassler Whitney.〔.〕 It states that a graph is planar if and only if its graphic matroid is also cographic (that is, it is the dual matroid of another graphic matroid). ==Algebraic duals== An equivalent form of Whitney's criterion is that a graph ''G'' is planar if and only if it has a dual graph whose graphic matroid is dual to the graphic matroid of ''G''. A graph whose graphic matroid is dual to the graphic matroid of ''G'' is known as an algebraic dual of ''G''. This, Whitney's planarity criterion can be expressed succinctly as: a graph is planar if and only if it has an algebraic dual.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Whitney's planarity criterion」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|